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Abstract. This article reports the first considerations, one dimensional ones, that led us to

consider a new to our knowledge class of numerical methods, called ”Optimally Transported

Schemes”. The name ”Optimally Transported Schemes” has been given because this method
is designed using mainly Optimal Transport Theory and Optimal Quantization considerations.

These schemes can be interpreted in the context of Eulerian Lagrangian schemes, Entropic

Schemes, kinetic schemes, or also pure particle methods. The basic idea underlying this method
is to compute the solution using a moving unstructured mesh, a mesh owning some optimal

repartition property.

1. Introduction

Our motivations to design new numerical methods comes from stochastic considerations arising
in Mathematical Finance (see [15]). In this area, valuation of some complex ”derivative” financial
products sensitive to a huge number of risk sources is an open numerical problem. This problem
leads to consider nonlinear diffusion type equations set in high dimensions. Standard numerical
Partial Differential Equations (P.D.E.) solvers, that means for us numerical methods based on an
Eulerian description of the underlying dynamic, fail considering efficiently these problems. This
so-called ”curse of dimensions” open numerical problem has been very attractive to us, since
it required to design new, innovating numerical methods to be efficiently tackled. Note that
innovative and very elegant numerical methods have already be designed to tackle the ”Curse
of Dimensions”. The Partial Differential Equations (PDE) school and the Stochastic school are
competing here: Multi scale ”sparse tensor product” wavelet analysis has been developed in
[13], since a Quantized method, usually considered as a Stochastic approach, can already handle
problems up to the first dimensions [5]. A direct multi scale approach using ”entropy conservative
scheme” may also be found in [1].

To tackle this problem, we designed and promote now a somehow different approach, that is
an hybrid PDE / Stochastic method. This method may be considered as a bridge between P.D.E.
and Stochastic analysis, since it is a quantized method, that uses mainly P.D.E. arguments. From
a continuous point of view, these numerical methods link with Optimal Quantization and Optimal
transport theory (see [26] for a review). The Optimal Transport theory seems to be a powerful
glue between PDE Theory and Stochastic Analysis. From a discrete point of view, we will be
using extensively the notion of entropy schemes techniques. Tadmor’s synthesis work ([24]) should
be consulted for a modern and brilliant overview of these numerical techniques.

In this paper, we report the fundamentals, self contained, one dimensional ideas, underlying
the construction of these ”Optimally Transported Schemes”. Doing so, we will show that this
technique is a general approach that can be used in a variety of different situations. To that
aim, this paper fully reviews the one dimensional case, from the continuous to the numerical and
algorithmic point of view, for three kind of one dimensional equations :

• A model of diffusive equation : the heat equation

(1.1) ∂tu− ∂2
xu = 0

• A model of fully non linear hyperbolic equation : the scalar Burger equation

(1.2) ∂tu− ∂xf (u) = 0
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As is well known, the previous equation owns infinitely many weak solutions, and we have
to select a unique one. Thus we give some further conditions : there exists a pair of
convex entropy - entropy flux U(u), F (u) such that

(1.3) ∂tU(u)− ∂xF (u) ≤ 0

in a weak sense.
• A system of nonlinear linear hyperbolic equations : the p system

(1.4) ∂tw = ∂xz; ∂tz = ∂xσ(w)

This system is also known as the nonlinear wave equation, since it can be written as
∂2
tw − ∂x (σ(∂xw)) = 0. The p-system owns many weak solutions u := (w, z). To select

one, we will consider entropic solutions, i.e. solutions that verify weakly

(1.5) ∂tE(u) ≤ ∂xF (u) with E(u) := e(w) +
z2

2
:=
∫ w

0

σ(s)ds+
z2

2
and F (u) := σ(w)z

The fact that this numerical technique applies indifferently to these three families of equations
indicates that the correct framework seems to be the one given by Conservation Laws, diffusive
type equation being part of. Obviously, the interest of this numerical method is not to be found
into these academical equations, but in forthcoming studies that deal with industrial applications
and higher dimensional case.

We noticed that mesh repartition has been the main concern of several numerical developments
during the last decades as Mesh Less methods (see for instance [10]) and force driven meshes (see
for instance [20]), or even coupled Eulerian-Lagrangian methods (see for instance [6] for a review).
They have been designed to boost algorithmic complexity of standard numerical methods. The
framework proposed in this paper may provide a general one able to shed some new lights over
their properties.

This method appears to be a new one, even if a deeper look to the existing and wide Mathematic
literature is still needed. Note that the pioneering work of G. Russo has already showed off the
spins-off of this method for the one dimensional diffusive case, and tackled the two-dimensional
one ([8], [9]). We noticed also that quite close ideas may be found within the work of P.G. Lefloch
[11] for the one dimensional case, a work that was independently driven. Our contribution may be
to have given a general framework for numerical analysis applications, noticing that the Optimal
Transport Theory can be used systematically to single out a map, that seems to be the correct
generalization to higher dimensions, and noticing also that Optimal Quantization arguments can
be used to design schemes satisfying an almost optimal property (see 2.10).

Not that we do not include numerical results in this paper. The numerical results, as well as
the C++ code, can be found in open access (see [16]).

2. Background Material

In this preliminary section, we introduce some basic definitions and state some technical results
that will be used throughout this paper.

2.1. Equi probable Quantizers. Consider that the solution of our three problems is a positive
measure u(t, x), of constant mass, and verifying

∫
Ω
u(t, x)dx = 1. The unstructured mesh that we

will be using is simply a collection of N continuous trajectory S(t) = {t 7→ Si(t) ∈ Ω}i=1,..,N that
”fit” this measure. This set of trajectory is chosen such that the expectation of every ”smooth
enough” function ϕ, with respect to the random variable of density u, is simply approximated by
an equi probable formula

(2.1)
∫

Ω

ϕ(x)u(t, x)dx ∼ 1
N

∑
i=1,..,N

ϕ(Si(t))

Remark 2.1. Note that this equi probable approximation is a weaker form of Optimal Quantiza-
tion. An optimal quantizer formula would yield the approximation

(2.2)
∫

Ω

ϕu :=
∫

Ω

ϕ(x)u(t, x)dx ∼
∑

i=1,..,N

ui(t)ϕ(Si(t))
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where ui(t) =
∫

Ωi(t)
u(t, x)dx,

∑
i ui(t) = 1 and

⋃
i=1,..,N Ωi(t) = Ω is the Voronoi diagram

induced by the quantizers, i.e.

(2.3) Ωi(t) = {x ∈ Ω : ‖x− Si(t)‖2 ≤ ‖x− Sj(t)‖2 for all j}
The quantizers are selected in order to minimize the quantization error

(2.4) ES(u(t, ·)) =
∑
i

∫
Ωi(t)

‖x− Si(t)‖2u(t, x)dx

that is the Wasserstein distance between the measure u(t, x)dx and the measure
∑
i ui(t)δSi(t).

Due to these properties, an optimal quantizer of a measure may be its best possible represen-
tation by a computer. However, it appeared that they are quite difficult to apprehend, and we do
not know efficient methods to compute them, efficiency meaning here CPU-time measurements.

Thus, in this paper, we will restrict ourselves to the computation of these equiprobable quantiz-
ers, that should be a correct alternative to Optimal Quantizers, although a little bit less precise,
while providing efficient numerical methods. We use this simplification to link easily with Optimal
Transport Theory: let us denote S−1 the cumulative of u, that is S−1(t, x) =

∫
{s∈Ω;s≤x} u(t, s)ds.

This function takes its value into x ∈ Ω. We have (with a slight notation abuse) S−1(t,Ω) = [0, 1].
Since u is a positive measure, we can define properly its inverse map S(t, y): this map takes its
values into y ∈ [0, 1], and is uniquely defined through the relation S(t, S−1(t, x)) = x. Elemen-
tary computations shows that S verifies (and may be defined as) u(t, x)∂yS(t, y) = 1, for every
x = S(t, y). Summarizing this property with a slight notation abuse, we write the one dimensional
Jacobian equation

(2.5) u(S)∂yS ≡ 1

S is usually referred as the increasing rearrangement of u. However, from the Optimal Transport
Theory point of view, S is the map transporting optimally the uniform measure 1[0,1](y)dy into
the measure u(t, x)dx. We refer to S as a transport map, because this concept is well defined in
higher dimensions, since increasing rearrangements are not. The basic property of this transport
map is the following : for every ϕ ”smooth enough”, using the change of variable x = S(t, y), the
expectation of ϕ with respect to the measure u, is

(2.6)
∫

Ω

ϕ(t, x)u(t, x)dx =
∫

[0,1]

ϕ(S(t, y))dy :=
∫

[0,1]

ϕ(S)

Using this transport map, we have a clear interpretation of equiprobable Quantizers :

(2.7) Si := Si(t) = N

∫
[ i−1

N , i
N ]

S(t, y)dy := N

∫
[ i−1

N , i
N ]

S

Each equiprobable quantizer controling a cell

(2.8) Ωi(t) = S(t, [
i− 1
N

,
i

N
])

Let us consider now the expectation computation (2.2), together with these ”equi probable”
quantizer :

(2.9)
∫

Ω

ϕu ∼ 1
N

∑
i=1,..,N

ϕ(Si)

Such a formula is a very classical Monte Carlo sampling formula. What is a little bit less classical
at our knowledge is the sampling sequence defined by the equi probable quantizers (2.7). This
sequence provides a much more accurate formula than the usual sampling sequences : we can
prove theoretically, and we also experimented numerically, and it is somehow an optimal property
intimated by these ”Optimally transported schemes”, that the equi probable quantizers (2.7)
provides a second order accuracy formula for computing expectations (2.2) in one dimension, in
the following sense : for any convex function ϕ,

(2.10) |
∫

Ω

ϕu− 1
N

∑
i=1,..,N

ϕ(Si)| ≤
C(ϕ)
N2
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This rate of convergence has to be compared to the rate of convergence of other sampling se-
quences: O(C(ϕ)√

N
) (pseudo random sequences), O(C(ϕ) lnN

N ) (quasi random sequences). We think
that only Optimal Quantizers can provide a constant C better than the constant appearing in the
error estimation (2.10).

2.2. Change of Variable Formula. As may have been understood in the previous subsection,
our strategy is to model numerically the equation after a change of variable given by an Optimal
Transport Map. Change of variables for Hyperbolic Conservations Laws is the main topic of P.
LeFloch work ([11]). This subsection summarize some results, using materials kindly provided by
P. LeFloch.

In this subsection we will consider solutions of system of conservation laws in the general case

(2.11) ∂tu+ ∂xf(u) = 0 with (u, f(u)) ≡ {ui(t, x), fi(u)}i=1,..,p ∈ Ωp × Rp, and x ∈ Ω ∈ R

We will not discuss the technical structure of the non linearity f . For such system, in the geometric
approach introduced in ([11]) one seeks for graph-solutions. A graph solution is a solution of
((2.11)) sought as (t, u(S(t, y))), where the continuous parametrized graphs x = S(t, y), where
y ∈ [0, 1] for simplicity, satisfies the monotonicity condition

∂yS ≥ 0,

in a suitable sense. Graph-solutions are continuous curves evolving in time, and shock waves are
endowed with an “internal structure” determined from an augmented system in which small-scale
physical mechanisms (e.g. diffusion) are specified.

For every test function ϕ(t, x) , the weak formulation of equation (2.11) is

(2.12)
∫

R+

∫
Ω

u(t, x)∂tϕ(t, x)dtdx+
∫

R+

∫
Ω

f(u)(t, x)∂xϕ(t, x)dtdx = 0

For which an admissible change of variable x = S(t, y) leads to, denoting for short u(S) ≡
u(t, S(t, y)) and dropping dependance variable for concision

(2.13)
∫

R+

∫
[0,1]

u(S)∂yS∂tϕ(S)dtds+
∫

R+

∫
[0,1]

f(u(S))∂yS∂xϕ(S)dtds = 0

Note that d
dtϕ(S) = ∂tϕ(S) + ∂xϕ(S)∂tS and also ∂yS∂xϕ(S) = ∂yϕ(S). We deduce thus the

formulation
(2.14)∫

R+

∫
[0,1]

u(S)∂yS
d

dt
ϕ(S)dtds−

∫
R+

∫
[0,1]

u(S)∂tS∂yϕ(S)dtds+
∫

R+

∫
[0,1]

f(u(S))∂yϕ(S)dtds = 0

This last equation is the weak formulation of the following equation in the transported variable
y ∈ [0, 1]

(2.15) ∂t (u(S)∂yS)− ∂y (u(S)∂tS) + ∂yf(u(S)) = 0

This last equation is a system, and can be rewritten in a closed form involving S and u(S)

(2.16) ∂tu(S)∂yS + ∂yf(u(S)) = 0

Let us suppose for instance that we use the property of the Optimal Transport Maps (2.5) of the
i− th component of u, defining the change of variable ui(S)∂yS = 1. Thus the i− th equation of
(2.15) is transported, up to a constant, into

(2.17) ∂tS = (∂yS) fi(u(S))

Since the others equations of the system (2.16) are transported into

(2.18) {∂tuj(S) + ui(S)∂yfj(u(S)) = 0}j=1,..,p
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3. The Heat Equation

We deal in this section with the Cauchy problem associated to the one dimensional heat equa-
tion

(3.1) ∂tu(t, x)− ∂2
xu(t, x) = 0

with initial conditions u(0, x) = u0(x) > 0 of initial mass
∫
u0 = 1. In one dimension, we consider

the unbounded domain Ω = R and u0 ∈ L1(R; (1+x2)dx). Mass conservative boundary conditions
of type ∂xu = 0 on the boundary of a bounded or half bounded set Ω can easily be included in
this analysis. We do not discuss them here to keep the expose as simple as possible.

Our aim in this section is to determine and compute the dynamic of the particle set {t→ Si(t)}i,
i.e. the dynamic of the equi probable quantizers of the map transport of u(t, ·). This set of particle
is supposed ordered throughout this paper : {Si < Si+1}i. Note that, for an initial Dirac mass
u0 = δx0 , the equiprobable quantizers can be computed explicitly (see [15]).

Let us recall some basic facts about the heat equation. This is a mass conservative equation,
i.e.
∫
u(t, ·) ≡ 1, which solution verifies a maximum principle, and verifies the following set of

conservation and dissipation properties
• First Moment Balance : d

dt

∫
xu(t, x)dx = 0.

• Second Moment Evolution : d
dt

∫
x2

2 u(t, x)dx =
∫
u0.

• Dissipation of the Boltzmann Entropy : d
dt

∫
U(u)(t, x)dx ≤ 0, where U(u) = u lnu.

3.1. Optimal transport map of the Density of the heat equation. Let us recall that the
optimal transport map S(t, y) is defined, in one dimension, through the Jacobian equation (2.5).
In one dimension, the dynamic of this map is fully described in the following proposition :

Proposition 3.1. Let 0 < u0(x) ∈ L1(R; (1 + x2)dx), and consider a solution t 7→ u(t, x) of
the heat equation (3.1), denote S(t, y) its transport map. Then, S is described by the following
equation

(3.2) ∂tS = −∂y
(

1
∂yS

)
where the initial condition S(0, y) ∈ L2([0, 1]) is the increasing rearrangement of ρ(0, x). Equiva-
lently, the transported solution u(S) = 1

∂yS
follows the equation

(3.3) ∂tu(S) = u2(S)∂2
yu(S)

These two equations defines a unique solution verifying
• S ∈ C1([0,+∞[, L2([0, 1])).
• u(S) ∈ C0(]0,+∞[, L1([0, 1])).

This proposition states basically that the Cauchy problem of the heat equation (3.1) is com-
pletely equivalent to its transported version (3.2).

Remark 3.2. The condition u(S) ∈ C0
(
]0,+∞[, L1([0, 1])

)
means that, for strictly positive

time,

(3.4)
∫

Ω

u2(t, x)dx < +∞.

This property would be false at initial time t = 0 and a Dirac Mass initial conditions ρ(0, x) =
δ0. However, it would hold for strictly positive time, that is a well know regularization effect of
diffusion type equations.

Proof. First let us recall that the heat equation can be rewritten is the following Lagrangian form

(3.5) ∂tu = ∂x (u∂x lnu)

Thus we have the conservative form (2.11) with f(u) = −u∂x lnu. Defining the change of variable
given by the Jacobian equation (2.5), and using (2.17), we get

(3.6) ∂tS = −∂ySu(S)∂x lnu(S) = −∂xu(S)
u(S)

= − ∂yu(S)
∂ySu(S)

= −∂y
1
∂yS
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Since using (2.18) leads to

(3.7) ∂tu(S)−u(S)∂y (u(S)∂x lnu(S)) = ∂tu(S)−u(S)∂y (∂xu(S)) = ∂tu(S)−u2(S)∂2
yu(S) = 0

Note that the basic set of properties of the heat equation are transported in the y variable
(mass conservation being implicit) accordingly. Using the equation (3.2), the reader should find
easy to prove that the transport map verifies formally

• First moment balance :

(3.8)
d

dt

∫
S(t, y)dy = 0.

• Second Moment evolution :

(3.9)
d

dt

∫
S(t, y)2

2
dy = 1

• Dissipation of the Boltzmann Entropy :

(3.10)
d

dt

∫
ln

1
∂yS(t, y)

dy ≤ 0.

The Second Moment evolution implies straightforwardly local in time existence, and global in
time existence of a unique solution

S ∈ C1([0,+∞[, L2([0, 1])).

The dynamic and properties for the transported solution u(S) are also let to the reader. This
ends the proof. �

3.2. Optimally transported Semi Discrete Scheme. Let us build a semi discrete scheme to
solve (3.2) : we first choose the optimal quantizer of the uniform distribution in the variable y,
that is {yi := i−1/2

N }i=1,..,N . Then we define {Si(t) ∼ N
∫

[ i−1
N , i

N ]
S}i=1,..,N . Note that t→ S(t) :=

{t → Si(t)}i=1,..,N can be interpreted as a set of particles trajectory. We define throughout this
paper the following norms

‖S(t)‖p`p =
∑

i=1,..,N

| Si(t) |p

N

The following Theorem, unknown at our knowledge, is almost straightforward using the ideas
presented in the previous subsection :

Theorem 3.3. Let consider N ordered particles {Si(t)}i=1,..,N satisfying the following semi dis-
crete scheme

(3.11)
d

dt
Si =

1
Si − Si−1

+
1

Si − Si+1

Then :

• The trajectories are globally defined : t → S(t) ∈ C1([0,+∞[, `2) with uniform bound
‖S(t)‖2`2 = ‖S(0)‖2`2 + tI.

• It is a second order scheme toward the equi probable quantizers (2.7) of the transport map
of the heat equation.

Remark 3.4. It is possible to derive closed formula to compute these equi probable quantizer, see
([15]). The purpose here is to show that a numerical scheme can be designed to compute them.

This semi discrete scheme was discovered at our knowledge first by G. Russo [9] in 1987, as
well as some of the properties stated in this subsection. Note that this semi discrete scheme has
some interesting properties from a computational point of view :

• This second order semi discrete scheme does not suffer from boundary treatments as
standard Eulerian schemes (fixed grid) does.
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• A simple time adaptive method is enough to focus on the main dynamic : indeed, we
are computing the equi probable quantizer of the solution of the heat equation. It means
that this mesh is somehow optimally adapted to the solution in space. Furthermore, this
time adaptive technique together with the previous point allows to perform long time
computation easily.

• We do not compute the solution u(t, x). If needed the solution may be retrieved using a
second order approximation

u(t, Si) ∼
2h

Si+1 − Si−1
=

2
N

1
Si+1 − Si−1

with convergence rate O( 1+t
N2 ).

• Higher order accuracy for the spatial discrete operator may be retrieved using the frame-
work developed in [12], that relies on results due to E. Tadmor [23].

We start proving the second order accuracy of the scheme : let us write (3.11) under the
following ”discrete lagrangian” form

(3.12)
d

dt
Si = −δȳv∗i,i+1 = −δȳ

1
δySi

= − 1
h

(
h

Si+1 − Si
− h

Si − Si−1

)
where v∗i,i+1 is the discrete entropy variable, δȳ (resp. δy) denotes the backward (resp.forward)
finite difference operator δȳfi = fi−fi−1

h (resp. δyfi = fi+1−fi

h ) . Using this form, the proof of
this Proposition is straightforward : it consists in noticing that (3.12) provides a second order
approximation of 3.2 using standard finite difference arguments.

Let us state some other interesting properties of this scheme, that will be used during the full
discrete in time modeling of the optimal transport of the heat equation.

Proposition 3.5. Let S(t) = {Si}i a set of N trajectories verifying (3.3). Then it enjoys
the following set of property that coincide with the continuous ones (mass conservation holds by
construction) :

• First moment balance
d

dt
S(t) :=

1
N

∑
i

d

dt
Si(t) = 0

• Second Moment evolution
d

dt
‖S(t)‖2`2N =

1
N

∑
i

d

dt

Si(t)2

2
= 1

• Dissipation of the Boltzmann Entropy

d

dt
H(S(t)) :=

1
N

∑
i

d

dt
ψi,i+1 :=

1
N

∑
i=2,..,N

d

dt
ln

h

Si+1 − Si
≤ 0

The fact that the set of conservation laws of the continuous solution (3.8 - 3.10) are transported
at a discrete level indicates that this scheme is accurate.

• The First moment balance is straightforward, noticing that summing over all index i in
(3.12) cancels out all terms.

• Second Moment evolution. We compute

d

dt
‖S(t)‖2`2N =

1
N

∑
i

Si
Si − Si−1

+
Si

Si − Si+1

= 2 +
1
N

∑
i

Si−1

Si − Si−1
+

Si+1

Si − Si+1

= 2|Λ| − d

dt
‖S(t)‖2

Ending the proof.
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• Dissipation of the discrete Boltzmann Entropy. Using the notations introduced previously,
we compute

d

dt
ψi,i+1 =

δȳv
∗
i+1,i+2 − δȳv∗i,i+1

h
v∗i,i+1

Introducing the discrete laplacian operator δyȳfi = δyδȳfi = fi+1−2fi+fi−1
h2 , we rewrite

this as
d

dt
ψi,i+1 = v∗i,i+1δyȳv

∗
i,i+1

for which a discrete integration by part holds :∑
i

d

dt
ψi,i+1 = −

∑
i

(
δȳv
∗
i,i+1

)2 ≤ 0

This set of properties ends the proof of Theorem 3.3.

3.3. Fully discrete Analysis. Let {tn}n≥0, t0 = 0, tn < tn+1 be a given time stepping. We
denote δt the forward discrete time derivative operator δtfn = fn+1−fn

τn , with τn = tn+1− tn, and
the backward discrete time derivative operator δt̄fn = δtf

n−1.

Proposition 3.6. Let Sn = {Sni }i be a solution of the following scheme

(3.13) δtS
n
i =

1

S
n+1/2
i − Sn+1/2

i−1

+
1

S
n+1/2
i − Sn+1/2

i+1

where S
n+1/2
i = Sn+1

i +Sn
i

2 . Then it is a fully discrete second order scheme towards the optimal
quantizer of the transport map of the heat equation. Furthermore it enjoys the following set of
properties :

• First moment balance

Sn :=
1
N

∑
i

Sni = S0

• Second Moment evolution.

‖Sn‖2`2 =
1
N

∑
i

(Sni )2

2
= tn1

• Dissipation of the discrete Boltzmann Entropy.

δtH(Sn) := δt
1
N

∑
i

ψni,i+1 :=
1
N

∑
i

δt ln
h

Sni+1 − Sni
≤ 0

Remark 3.7. Here too, fully discrete schemes of arbitrary order can be designed using the frame-
work in [12], relying on [23].

• The First moment balance is straightforward, writing the system under the form

(3.14) δtS
n
i = −δȳv∗,n+1/2

i,i+1

and summing over all indexes i.
• Second Moment evolution. We compute, following the same guideline that the semi

discrete case

δt‖Sn‖2`2 =
1
N

∑
i

S
n+1/2
i δtS

n
i = 1− δt‖Sn‖2

i.e. δt‖Sn‖2`2 = 1, ending the proof.
• Dissipation of the discrete Boltzmann Entropy. Using the notations introduced previously,

we compute

(3.15) δtψ
n
i,i+1 =

1
τn

ln
v∗,n+1
i,i+1

v∗,ni,i+1

=
1
τn

ln

(
1 +

v∗,n+1
i,i+1 − v

∗,n
i,i+1

v∗,n+1
i,i+1

)



OPTIMALLY TRANSPORTED SCHEMES : ONE DIMENSIONAL CASE 9

Using ln(1 + u) ≤ u we have

δtψ
n
i,i+1 ≤ v

∗,n+1/2
i,i+1 δt

1
v∗,n+1
i,i+1

From (3.14) we get

δt
1

v∗,ni,i+1

= δt
Sni+1 − Sni

h
= −δȳ

(
v
∗,n+1/2
i+1,i+2 − v

∗,n+1/2
i,i+1

)
Thus

δtψ
n
i,i+1 ≤

δȳv
∗,n+1/2
i+1,i+2 − δȳv

∗,n+1/2
i,i+1

h
v
∗,n+1/2
i,i+1

The proof then follows the same guidelines than the semi discrete case.
An algorithm to solve the scheme 3.13 is proposed in the following Proposition, where we

denote ‖f‖`∞ = supi |fi|. This algorithm is basically a fixed point one. In the next sections
related to Burger’s and Wave equation, the same kind of algorithms can be designed to solve the
fully discrete schemes. We will not present them, the present analysis providing the material to
analyze their properties.

Proposition 3.8. Let us consider the following algorithm to solve 3.13 :

Sn+1,0
i = Sni(3.16)

S
n+1/2,k
i =

Sni + Sn+1,k
i

2
(3.17)

Sn+1,k+1
i = Sni +

τn

S
n+1/2,k
i − Sn+1/2,k

i−1

+
τn

S
n+1/2,k
i − Sn+1/2,k

i+1

(3.18)

This algorithm is exponentially convergent toward the solution of (3.13) under the C.F.L (Courant
Friedrich Levy) condition

(3.19) ‖ τn

(Sni )2 −
(
Sni−1

)2 ‖`∞ < C

Finite difference schemes links naturally with Markov Chains : consider the matrix Ξn+1/2 =(
ξ
n+1/2
i,j

)
i,j

given by

ξ
n+1/2
i,i =

1
2

1(
S
n+1/2
i

)2

−
(
S
n+1/2
i−1

)2 +
1(

S
n+1/2
i

)2

−
(
S
n+1/2
i+1

)2

ξ
n+1/2
i,i+1 =

1
2

1(
S
n+1/2
i

)2

−
(
S
n+1/2
i+1

)2

ξ
n+1/2
i,i−1 =

1
2

1(
S
n+1/2
i

)2

−
(
S
n+1/2
i−1

)2

Then the fully discrete scheme can be interpreted as a linear system Sn+1 = Πn+1/2Sn where the
(transition) matrix Πn+1/2 =

(
π
n+1/2
i,j

)
i,j

is given by

Πn+1/2 = (Id − τnΞ)−1 (Id + τnΞ)

Thus the convergence rate of our fixed point algorithm depends upon the eigenvalues {λn+1/2
i }i

of the matrix Id −Πn+1/2. Rough Estimations over these eigenvalues leads to the C.F.L. result.
The optimal value of the C.F.L. constant C is not known precisely. For numerical implementa-

tion, we tune dynamically this constant with a simple and efficient time adaptive technique : we
start fixing as a guess C = 1, that allows us to compute back the value of the next time step tn+1.
We stop the computations after a given a stop criteria is reached : ‖Sn+1,k+1

i − Sn+1,k
i ‖`2 < ε

or if the number of iterations is greater than the arbitrary number ten. If the computations has
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not converged after these ten first iterations, we divide the C.F.L. constant by two and reset the
algorithm. If the number of iterations is less than three, then we multiply the C.F.L. constant by
two for the next time step computation.

Note also that ‖ 1

(Sn
i )2−(Sn

i−1)
2 ‖`∞ is expected to decrease (at a rate O( h√

tn
)) due to the Boltz-

mann Entropy Dissipation 3.15 and the Second Moment evolution.

4. Scalar’s Burger Equation

Let us recall that the one dimensional Cauchy problem associated to the burger equation is

(4.1) ∂tu− ∂xf(u) = 0, u, f(u) ∈ R, x ∈ R, t > 0,

together with smooth enough compacted supported initial conditions 0 < u(0, x) = u0(x) ∈ L1(R)
and scalar entropy conditions (1.3) in a weak sense. Here also, we consider for simplicity the
unbounded case x ∈ R.

To ensure that u can be used to define a transport map, i.e. u > 0 for all time, we consider
ad hoc hypothesis : the entropy U(u) is supposed to be convex. In this situation, the entropy
solution coincides with the limiting Lax viscous solution, and we have u(t, x) > 0 if u0 > 0.

Let us recall some basic facts about Burger’s scalar equations : they are mass conservative
equations, i.e.

∫
u(t, ·) ≡ 1. We use also the following set of conservation and dissipation properties

• First Moment Balance : d
dt

∫
xu(t, x)dx = −

∫
f(u).

• Entropy Dissipation : d
dt

∫
U(u)(t, x)dx ≤ 0.

and as in the previous heat equation case, we denote the initial mass 1 =
∫
u0.

Call v(u) = ∇U(u) the entropy variable associated with the given entropy U . In our case, the
entropy is strictly convex, and v 7→ v(u) is a one-to-one mapping which can be used as a change
of variable for convex entropies (Friedrichs and Lax), that is we can set

(4.2) g(v) := f(u), G(v) := F (u).

Furthermore, in our context, we define the following quantities

f̃(s) := sf(
1
s

); F̃ (s) = F (
1
s

); Ũ(s) = sU(
1
s

)

In our context, and in the spirit of definitions (4.2), the following is also well defined,

ṽ(s) := ∇Ũ(s); g̃(v) := f̃(s); G̃(v) = F̃ (u)

4.1. Optimal Transport Map dynamic for Burger’s equations. As for the heat equation,
we define in this subsection the transport map of the density of Burger’s equation S(t, y) through
the Jacobian equation (2.5). We explicit in the following lemma the dynamic followed by S

Lemma 4.1. Let S(t, y), with y ∈]0, 1[, satisfying

(4.3) ∂tS − f̃ (∂yS) = 0

Then u(S) = 1
∂yS

is a solution of the Burger equation (1.2). More over, if

(4.4) ∂tŨ(∂yS)− ∂yF̃ (∂yS) ≤ 0

in a weak sense, then u(S) is the entropy solution of the one dimensional Burger equation (1.2)−
(1.3)

Proof. Straightforward application of the change of variable formula 2.17 shows that the dynamic
(4.3) holds. Let us now prove that the entropy condition (4.4) is equivalent to the entropy
condition (1.3). We expand in the next formula its weak formulation, that is for every smooth
ϕ(y)

d

dt

∫
[0,1]

Ũ(∂yS)ϕ+
∫

[0,1]

F̃ (∂yS)∂yϕ ≤ 0

using back the optimal transport change of variable x = S(t, y), with u(t, S) = ∂xS
−1(t, S) we

have
d

dt

∫
R
uŨ(

1
u

)ϕ(S−1) +
∫

R
uF̃ (

1
u

)∂yϕ(S−1) ≤ 0
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Notice that u∂yϕ(S−1) = ∂x(ϕ(S−1)) and we recall uŨ( 1
u ) = U(u), F̃ ( 1

u ) = F (u). Thus we get

d

dt

∫
R
U(u)ϕ(S−1) +

∫
R
F (u)∂yϕ(S−1) ≤ 0

Under the condition u0 > 0, S(t, y) is a isomorphism from ]0, 1[ into R, thus the previous formula
is equivalent to the weak formulation of the entropy condition (1.3).

Note that the entropy dissipation implies

Ũ(∂yS) ∈ L1 decreasing in time

And thus ∂tS also. In fact, the transport map is continuously defined, since u has bounded
variations

�

4.2. Optimally transported Semi Discrete Scheme. In the context of numerical approxi-
mation of conservation laws, it is suggested (see [12] and references therein) to consider entropy
conservative schemes, that are schemes verifying (1.3) as an equality

∂tU(u)− ∂xF (u) = 0

and then add regularization terms. We will follow this idea, looking for a scheme verifying (4.4)
as an equality

∂tŨ(∂yS)− ∂yF̃ (∂yS) = 0

To that aim, we recall that the Tadmor fluxes ([23])

g̃∗(v0, v1) =
∫ 1

0

g̃(v0 + s(v1 − v0))ds

are ”conservative” : denoting the numerical entropy as

G̃∗(v0, v1) =
G̃(v0) + G̃(v1)

2
+
v0 + v1

2
g̃∗(v0, v1)− 1

2
(v0g̃(v0) + v1g̃(v1))

we have the formula

(4.5) v0 (g̃∗(v0, v1)− g̃∗(v−1, v0)) = G̃∗(v0, v1)− G̃∗(v−1, v0)

For the space modeling, we use the notation

Ũi,i+1 := Ũ(
Si+1 − Si

h
); ṽi,i+1 := ṽ(

Si+1 − Si
h

)

and also
g̃∗i,i+1 := g̃∗(ṽi,i+1, ṽi+1,i+2); G̃∗i,i+1 := G̃∗(ṽi,i+1, ṽi+1,i+2)

We state our result :

Lemma 4.2. Let consider N ordered particles {Si(t)}i=1,..,N satisfying the following semi discrete
scheme

(4.6)
d

dt
Si − g̃∗(ṽi−1,i, ṽi,i+1) = 0

Then :
• This scheme verifies a discrete entropy conservation

(4.7)
d

dt
Ũi,i+1 − δyG̃∗i−1,i = 0

• It is a second order semi discrete scheme toward the equi probable quantizers (see 2.7) of
the weak solution of (4.3) with null entropy dissipation.

• The trajectories are globally defined : t→ S(t) ∈ C1([0,+∞[, `1).

Remark 4.3. Let us make some remarks
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• These semi-discrete schemes defines global in time strong solutions. It is somehow sur-
prising : actually, without any dissipation terms, solutions of Eulerian type semi-discrete
numerical schemes produces spurious oscillations, and a strong solution can not be glob-
ally defined. From another point of view, transport map are smoothers than the density
they represent.

• The trajectories of the particles of this semi-discrete scheme concentrates around shock
formations. It is an interesting ”shock capturing” property from a numerical point of view.

• From a numerical point of view, it is not necessary to add viscosity to these semi-discrete
schemes. However this semi discrete scheme does not converges toward the entropy solu-
tion without adding viscosity. Actually, would convergence holds without viscosity, then it
would imply that the entropy solutions of Burger’s equations verify an Energy Conserva-
tion :

d

dt

∫
R
U(u(t, x))dx = 0

that is false.

Proof. Entropy conservation : we compute

d

dt
Ũi,i+1 = ṽi,i+1

d

dt

Si+1 − Si
h

= ṽi,i+1

g̃∗i,i+1 − g̃∗i−1,i

h

So that using (4.5) we get

d

dt
Ũi,i+1 =

G̃∗i,i+1 − G̃∗i−1,i

h
that is the result.

Second order accuracy : we recall that the Tadmor’s fluxes are second order accurate fluxes.
Second order accuracy holds using standard finite difference arguments.

Globally in time defined. Note that the discrete entropy conservation straightforwardly implies
that

t→‖ Ũ ‖`1
is constant. This bounds allows to have a bound over h

Si+1−Si , which allows back to bound
g̃∗(ṽi−1,i, ṽi,i+1), ending the proof. �

4.3. Fully discrete analysis. We use the notations in section 3.3. The fully discrete scheme
and its properties are summarized in the following Proposition.

Proposition 4.4. Let Sn = {Sni }i,n≥0 be a solution of the following scheme

δtS
n
i = g̃∗(ṽn+1/2

i−1,i , ṽ
n+1/2
i,i+1 )

where Sn+1/2
i = Sn+1

i +Sn
i

2 . Then
• This scheme verifies the discrete entropy conservation

δtŨ
n
i,i+1 − δyG̃

∗,n+1/2
i−1,i = 0

• This scheme is a fully discrete second order scheme towards the equi-probable quantizer
of the transport map of the entropy conservative burger equation.

Remark 4.5. Here too, fully discrete schemes of arbitrary order can be designed using the frame-
work in [12], relying on [23].

The Hamilton system (4.6) is approximated directly by the non linear system of equations

(4.8) δtS
n
i = g∗

(
v
∗,n+1/2
i−1,i , v

∗,n+1/2
i,i+1 )

)
;Si(0) = S0

i

where

(4.9) v
∗,n+1/2
i,i+1 = v∗

(
δyS

n
i , δyS

n+1
i

)
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and v∗(v0, v1) is the Tadmor flux associated to v, that is

(4.10) v∗(v0, v1) =

∫ v1
v0
v(s)ds

v1 − v0

The choice of such a scheme is motivated by the fact that it verifies the entropy evolution property

Lemma 4.6. Let {Si ≡ Si(t)}i=1,..,N be N particles verifying the fully discrete scheme (4.8).
Then this set of particles verifies a discrete Energy Conservation

(4.11) δt
∑
i

Ũ(δySni ) = 0

Proof.

(4.12) δtŨ(δySi) = v
∗,n+1/2
i,i+1 δtδyS

n
i = v

∗,n+1/2
i,i+1 δyg

∗
(
v
∗,n+1/2
i−1,i , v

∗,n+1/2
i,i+1

)
Using the property of Tadmor fluxes, we have

(4.13) δtŨ(δySi) = δyG(v∗,n+1/2
i−1,i )

Summing over all indices i will cancel the right hand term. �

Thus this scheme suits well to our purposes. To solve the system 4.8, we use the Entropic
Scheme fixed point algorithm : first initiate

(4.14) S0,n+1
i = Sni .

then loop for k ≥ 1:

(4.15) v
∗,k,n+1/2
i,i+1 := v∗

(
δyS

n
i , δyS

k−1,n
i

)
;Sk,n+1
i = Sni + τng∗

(
v
∗,n+1/2
i−1,i , v

∗,n+1/2
i,i+1 )

)
Until a convergence criteria holds, a generic and natural convergence criteria being

(4.16) ‖ Ũ(δySni )− Ũ(δyS
k,n+1
i )

τn
‖`1 ≤ ε‖Ũ(δySni )‖`1

To illustrate numerically, we consider the classical Burger equation with a quadratic Entropy

(4.17) ∂tu+
1
2
∂xu

2 = 0;
1
2
∂tu

2 +
1
3
∂xu

3 ≤ 0

This corresponds to the particle system

(4.18) ∂tS + f̃(∂yS) = ∂tS +
1

2∂yS
= 0; ∂t

1
2∂yS

+ ∂y
1

3(∂yS)3
≤ 0

This yields the expressions

(4.19) v(s) = − 1
2s2

; g(s) = −
√

2s
2

and the Tadmor fluxes are

(4.20) v∗(v0, v1) = − 1
2v0v1

; g∗(v0, v1) = −
√

2
3
v0 + v1 +

√
v0v1√

v0 +
√
v1

Here, the initial condition correspond to a cauchy data given by a concentrated gaussian
u0(x) = N(σ, x) = 1√

2σ
exp −x

2

σ , where σ = 0.1. This leads to initial condition given by

{S0
i = P−1(σ, i+1/2

N )}i=1,..,N−1, where P−1(σ, x) is the inverse of the gaussian cumulative.
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4.3.1. The quadratic burger equation. In this section, we drive explicit computations for the qua-
dratic Burger equation. This equation is used for numerical tests.

ṽ(u) := − 1
2u2

; g̃(v) :=
√
−2v
2

; G̃(v) =
(−2v)3/2

3
We compute the Tadmor flux :

g̃∗(v0, v1) = −
√

2
3
v

3/2
1 − v3/2

0

v1 − v0

Thus the scheme is
d

dt
Si −

√
2

3
ṽ

3/2
i,i+1 − ṽ

3/2
i−1,i

ṽi,i+1 − ṽi−1,i
= 0

with ṽi,i+1 = ṽ(Si+1−Si

h ) = − h2

2(Si+1−Si)2
. Using this last expression, the semi discrete scheme is,

with some further computations

d

dt
Si −

2
3

(
h

Si+1 − Si
+

h

Si − Si−1
− h

Si+1 − Si−1

)
= 0

For this last scheme, the energy conservation writes :

t→ 1
N

∑
i

h2

(Si+1 − Si)2 = C

that implies back the bound ‖ h
Si+1−Si

‖`∞N ≤
√
NC, proving that the scheme is globally defined

in time.

5. p-systems

Let us recall the Cauchy problem associated to the one dimensional p-system (1.4) :

(5.1) ∂tw = ∂xz; ∂tz = ∂xσ(w)

where u(t, x) := (w(t, x), z(t, x)) and x ∈ Ω. We consider this Cauchy problem together with
compact supported initial Cauchy data conditions w(0, x) = w0(x), z(0, x) = z0(x). The domain
Ω may be R or bounded with periodic boundary conditions for simplicity. However, Neumann
boundary conditions (mass conservative) could be considered as well. The previous equation owns
many weak solutions. To select one , we will consider entropic solutions, i.e. solutions that verifies
weakly (1.5). Let us recall some basic fact about entropic solutions of p systems (1.4). We recal
the the Riemann problem associated to p systems can be difficult : see for instance ([17]) and
references therein.

• Mass conservative :

(5.2)
d

dt

∫
Ω

w(t, x)dx =
d

dt

∫
Ω

z(t, x)dx = 0

• Entropy dissipation : let

(5.3) E(u) =
∫ w

0

σ(s)ds+
z2

2
:= e(w) +

z2

2

be the entropy density, then the p system is entropy dissipative: (1.5) implies

(5.4)
d

dt

∫
Ω

E(u) ≤ 0

• Entropy variable : let v = (v1, v2) = ∇E(u) = (σ(w), z) be the entropy variables. Then
Friedrich and Lax showed that these variables can be used as a change of variable if the
entropy functional is convex. In this context, the p system can be linearized :

(5.5) ∂tu = ∂xg(v) with g(v1, v2) = (v2, v1)



OPTIMALLY TRANSPORTED SCHEMES : ONE DIMENSIONAL CASE 15

Since the equation followed by the entropy variables (v1, v2) is, denoting G(v) := v1v2 =
F (u),

(5.6) ∂tE(u)− ∂xG(v) = v1∂xv2 + v2∂xv1 − ∂x (v1v2) ≤ 0

• First momentum balance

(5.7)
d

dt

∫
Ω

xE(u) ≤
∫

Ω

x∂xG(v) ≤ −
∫

Ω

v1v2

• Second momentum evolution for wave equation (σ(w) = w, ∂2
tw − ∂2

xw = 0).

(5.8)
d2

dt2

∫
Ω

x2

2
w = C

5.1. Transported equations. We will focus over a optimal transport map constructed over the
density w, that is mass conservative. Other transport map may be considered, depending on the
quantity of interest for the numerical analyst. Some suggestions could be the velocity density z,
or the energy density E(u). For this last quantity, take care that our analysis needs at present
time conservation of the density, thus would apply only to Energy conservative p-systems as wave
equation (∂2

tw − ∂2
xw = 0). Modification of this method would be needed to include dissipative

densities, as Entropy dissipative p systems.
The change of variable formula (2.15) expresses here as

(5.9) ∂t (w(S)∂yS)− ∂y (w(S)∂tS) + ∂yz(S) = 0 ; ∂t (z(S)∂yS)− ∂y (z(S)∂tS) + ∂yσ(w(S)) = 0

Let us define the change of variable w(S)∂yS = 1, that is S defines the increasing rearrangement
of w. We obtain

(5.10) − w(S)∂tS + z(S) = 0 ; ∂t (z(S)∂yS)− ∂y (z(S)∂tS) + ∂y (σ(w(S))) = 0

and we obtain, denoting ∂tS = ∂yV = z(S)
w(S) ,

(5.11) ∂tS = ∂yV and ∂tV =
(∂tS)2

∂yS
− σ(

1
∂yS

)

This is a second order equation ∂2
t S = ∂y

(
(∂tS)2

∂yS
− σ( 1

∂yS
)
)

.
We summarize in the following lemma the main result of this section

Lemma 5.1. Let consider a solution (S, V ) of (5.11) and consider

(5.12) u(S) := (w(S), z(S)) := (
1
∂yS

,
∂yV

∂yS
)

Then u(S) is a solution of the p system (1.4). Moreover, if (S, V ) verifies weakly

(5.13) ∂t (E(u(S))∂yS)− ∂yF (u(S)) ≤ 0

Then u(S) is the entropy solution (1.5) of the p system and S verifies

(5.14) S ∈ C2([0,+∞[, L2([0, 1])).

Proof. We already proved that (5.11) is equivalent to the p system. Let us show that S in Entropy
conservative. To that aim, let us consider the weak form of (5.13). This relation means that, for
any ”smooth” ϕ

(5.15)
d

dt

∫
[0,1]

∂ySE(u(S))ϕ(S) +
∫

[0,1]

F (u(S))∂yϕ(S) = 0

Using the transport map x = S(t, y), after expanding ∂yϕ(S) = ∂yS(∂xϕ)(S), this relation is
equivalent to

(5.16)
d

dt

∫
Ω

E(u)ϕ+
∫

[0,1]

F (u)∂xϕ = 0
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that is the weak formulation of (1.5). Let us show that S ∈ C2([0,+∞[, L2([0, 1]))

(5.17)
d2

dt2

∫
[0,1]

S2

2
=
∫

[0,1]

(∂tS)2 +
∫

[0,1]

S∂y

(
(∂tS)2

∂yS
− σ(

1
∂yS

)
)

These computations provides a bound over the L2 norm of S using the estimation (5.4) :

(5.18)
d2

dt2

∫
[0,1]

S2

2
=
∫

[0,1]

σ(
1
∂yS

)∂yS =
∫

[0,1]

σ(w(S))
w(S)

=
∫

Ω

σ(w) ≤
∫

Ω

E(u0)

�

5.2. Optimally Transported semi discrete Scheme. We use the same approach as we did
for the Burger equation to design our scheme : we design schemes for which the equiprobable
quantizers are described by particles trajectories

(5.19) {Si := Si(t) ∼ N
∫

[ i−1
N , i

N ]

S}i=1,...,N

Let us consider

(5.20) {ui = (wi, zi) =

(
1

δySi
,
d
dtSi

δySi

)
}i=1,..,N

As usual, we are first looking for a scheme verifying a discrete version of the Entropy conservative
condition (5.13). The Entropy functional to be conserved is

(5.21) E(u) = E(w, z) =
e(w)
w

+
(z)2

2w
Note that this functional defines the following entropy variables

(5.22) v(u) = (v1, v2)(u) = ∇E(u) =
(
−e(w)
w2

+
σ(w)
w
− (z)2

2w2
,
z

w

)
Thus viscosity of shape

(5.23) δyȳv(ui) = δyȳ

(
−e(wi)

w2
i

+
σ(wi)
wi

− (zi)2

2w2
i

,
zi
wi

)
should be used to define entropy decreasing schemes for numerical applications. We denote as
usual h := 1

N . We state our result :

Proposition 5.2. Let consider N ordered particles {Si(t)}i=1,..,N satisfying the following semi
discrete scheme

(5.24)
d

dt
Si = δȳVi and

d

dt
Vi =

(
d
dtSi

)2
δySi

− σ(
1

δySi
)

Then :
• This semi discrete scheme computes the equiprobable quantizer of the density w(t, x) of

the weak solution of the Entropy Conservative p system at second order accuracy.
• The trajectories are globally defined : t → S(t) ∈ C1([0,+∞[, `2) with uniform bound
‖S(t)‖2`2 = ‖S(0)‖2`2 + t2

2 E.

We do not know any reference for such a scheme. As for the heat equation, second accuracy
holds using standard finite difference arguments.

As for the heat equation, we state some other interesting properties of this scheme, that will
be also used also during the full discrete in time modeling.

Lemma 5.3. Let S(t) = {Si}i a set of N trajectories verifying (5.24). Then it enjoys the following
set of property that coincide with the continuous ones (Mass conservation holds by construction)
:

(5.25)
d2

dt2
‖S(t)‖2`2N ≤ E(u0)
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Here too, we think that the fact that the set of conservation laws of the continuous solution
are transported at a discrete level indicates that this scheme is accurate.

Proof. Entropy conservation. We drop the index i for readability. From (5.21) we compute

(5.26)
d

dt
E(u) = v1(u)

d

dt
w + v2(u)

d

dt
z

We compute also, recalling that w = 1
δyS

and z = w d
dtS = wδȳV

(5.27)
d

dt
w = −w2δy

d

dt
S and

d

dt
z = wδȳ

d

dt
V − w2 d

dt
Sδy

d

dt
S

Note that d
dtV = w

(
d
dtS
)2 − σ(w).

Second Moment evolution. We compute, using discrete integration by parts

1
2
d2

dt2
‖S(t)‖2`2N =

1
N

∑
i

(
d

dt
Si

)2

+
1
N

∑
i

Siδȳ

((
d
dtSi

)2
δySi

− σ(
1

δySi
)

)

=
1
N

∑
i

δySi

(
σ(

1
δySi

)
)

≤ E(u0)

Ending the proof. �

To end the proof of the main Proposition, we use the same guidelines as the heat equation
: local in time existence of a solution holds. Global existence follows using the Second Moment
evolution.

5.3. Fully Discrete Analysis. We use the same notations than section 3.3.

Proposition 5.4. Let Sn = {Sni }i,n≥0 be a solution of the following scheme

(5.28) δtS
n
i = δȳV

n+1/2
i and δtV ni =

(
δȳV

n+1/2
i

)2

δyS
n+1/2
i

− σ

(
1

δyS
n+1/2
i

)

with the notations Sn+1/2
i = Sn

i +Sn+1
i

2 . Then
• This scheme verifies the discrete Second Moment evolution

(5.29) δtt̄‖Sn‖2`2N = E

• This scheme is a fully discrete second order scheme towards the equiprobable quantizer of
the transport map of the entropy conservative burger equation.

This scheme is solved by an iterative procedure, exactly as for the heat equation. To have an
Entropy decreasing scheme, one have to add viscosity terms in the entropy variables of (5.21).

Remark 5.5. Here too, fully discrete schemes of arbitrary order can be designed using the frame-
work in [12], relying on [23].

Proof. Second order accuracy holds using standard finite difference schemes arguments. Let us
concentrate to the proof of the Second Moment evolution.

The following discrete finite difference derivation rules holds :

δt (unvn) = un+1/2δtv
n + vn+1/2δtu

n

We deduce

δtt̄
(Sni )2

2
= δt̄

(
S
n+1/2
i δtS

n
i

)
= Sn±i δtt̄S

n
i + δt̄S

n+1/2
i (δtSni )n−1/2

We check δt̄S
n+1/2
i = δtS

n−1/2
i . Using the fully discrete scheme 5.28, we have thus

δtt̄‖Sn‖2`2N = ‖Vn+Vn−‖`1N −
E

N

∑
i

Sn±i δȳ

(
1

δyS
n±
i

(
1− V n+

i V n−i
))

The proof follows now the same guidelines that the semi discrete case. �



18 J.M. MERCIER

References

[1] Abgrall R., Mercier J.M., Adaptive P.D.E. Solver in Finance. Unpublished. To be submitted. (2004)

[2] Abgrall R., Poncet P., A few Multiresolution Schemes for the Black-Scholes equation, preprint de l’universite
de Bordeaux I, (2002).

[3] Antonov, I.A., and Saleev, V.M , USSR Computational Mathematics and Mathematical Physics, vol. 19, no.
1, (1979), 252-256.

[4] V.Bally, B.Pages A quantization algorithm for solving discrete time multi-dimensional optimal stopping prob-

lems. Bernoulli, 9:10031049, 2003.
[5] V. Bally, G. Pages and J. Printems . A quantization method for pricing and hedging multi-dimensional

American style options, Mathematical Finance. 15(1), 119-168, (2005).

[6] Donea, J. and Huerta, A. (2003). Finite element method for flow problems. J.Wiley.
[7] Degond P., Mustieles F., Deterministic Approximation of diffusion equations using particles, Internal Report,

Ecole Polytechnique, 167, 1987.

[8] G. Russo, A Particle Method for Collisional Kinetic Equation I Basic Theory and One-Dimensional Result,
Journal of Comp. Physic Vol. 87 N2 April 1990, 270-300.

[9] G. Russo, Deterministic Diffusion of Particles, Comm. on Pre and Applied Math., Vol. XLIII 1990, 697-733.

[10] Dez P., Fernandez-Mendez S., Huerta A., enrichissement des interpolations d’elements finis en utilisant des
methodes sans maillages, M2AN, Vol. 36, No 6, 2002, pp. 10271042.

[11] P.G. LeFloch , Graph solutions of nonlinear hyperbolic systems, J. Hyper. Diff. Equa. 1 (2004), 243–289.

[12] P.G.LeFloch, Mercier J.M., Rohde C. Fully discrete entropy conservative schemes of arbitrary order, SIAM J.
Numer. Anal. Vol. 40, No. 5, 1968-1992 (2002).

[13] Matache A.M., Nitsche P.A. and Schwab C., Wavelet Galekin Pricing of American Options on Levy Driven
Assets, Research reports N 2003/06, (2003).

[14] Matache A.M., Von Petersdorff T. and Schwab C., Fast Deterministic Pricing of Options on Levy driven

Assets, Research reports N 2002/11, (2002).
[15] Mercier, J.M. Optimally Transported schemes. Applications to Mathematical Finance. In preparation.

[16] Mercier, J.M., Optimally Transported Schemes C++ ”Toolkit”. www.crimere.com

[17] Mercier J.M., Piccoli B., Admissible Riemann solvers for genuinely nonlinear p system of mixed type, Journal
of Differential Equations 180 (2002), 395-426.

[18] Niederreiter H., in Numerical Integration III, ISNM vol. 85, H. Brass and G. Hammerlin, eds. (Basel: Birkha

user), (1988), 157-171.
[19] Osher S., Sander R., Numerical Approximations to Non Linear Conservation Laws with Locally Varying Time

and Space Grids, Math. Comput. (40), pp.321-336, (1983).

[20] Persson P.O., Strang G. Simple Mesh Generator in MATLAB, SIAM Review, vol. 46, no. 2, 329–345, June
2004

[21] Von Petersdorff T. and Schwab C., Numerical Solutions of Parabolic Equations in High Dimension, Preprint,
(2003).

[22] Sobol I.M., USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4, (1967), 86-112.

[23] Tadmor E., Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes Mathematics
of Computation, Vol. 43, No. 168 (Oct.,1984), pp. 369-381

[24] Tadmor E., Entropy stability theory for difference approximations of nonlinear conservation laws and related

time-dependent problems, Acta Numerica (2006), pp. 451512
[25] Tang H., Warnecke G., A Class of High Resolution Difference Scheme For Non Linear Hamilton Jacobi

Equations with Varying Time and Space Grids, Preprint, (2003).

[26] Villani C., Optimal Transport Old and New, Springer Verlag, 2006.


	1. Introduction
	2. Background Material
	2.1. Equi probable Quantizers
	2.2. Change of Variable Formula

	3. The Heat Equation
	3.1. Optimal transport map of the Density of the heat equation
	3.2. Optimally transported Semi Discrete Scheme
	3.3. Fully discrete Analysis

	4. Scalar's Burger Equation
	4.1. Optimal Transport Map dynamic for Burger's equations
	4.2. Optimally transported Semi Discrete Scheme
	4.3. Fully discrete analysis
	4.3.1. The quadratic burger equation


	5. p-systems
	5.1. Transported equations
	5.2. Optimally Transported semi discrete Scheme
	5.3. Fully Discrete Analysis

	References

